
On an i terat ive  m e t h o d  for  s i m u l t a n e o u s  i n c l u s i o n  o f  p o l y n o m i a l  

c o m p l e x  z e r o s  
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A B S T R A C T  

Star t ing f rom disjoint  discs wh ich  con ta in  po lynomia l  complex  zeros, the i terative interval m e t h o d  
o f  the third order  for  the s imul t aneous  finding inclusive discs for c omp le x  zeros is formulated .  The  
Lagrangean in te rpo la t ion  fo rmula  and complex  circular ar i thmetic  are used.  The  convergence 
t heo rem and the condi t ions  for  convergence  are considered.  The p roposed  m e t h o d  has been  applied 
for  solving an algebraic equa t ion .  

1. INTRODUCTION 

The iterative interval methods for the sinmltaneous de- 
termination of polynomial complex zeros were the sub- 
ject of many papers (see [7], [8], [9], [10], [11], [16], 
[17]). These methods are derived as interval versions of 
the known iterative processes in ordinary arithmetic. 
The improvement of inclusive discs containing the exact 
polynomial zeros, in a sense of contraction, is done by 
iterative procedure using complex circular arithmetic. 
D. Braess and K. P. Hadehr [4] applied Lagrangean inter- 
polation formula for the simultaneous inclusion of the 
polynomial zeros by discs in a complex plane. The op- 
timization of these discs leads to a special type of  
matrix eigenvalue problem. In section 2 of  this paper a 
new simultaneous interval method is derived. This 
method also applies Lagrangean inte~olation, but the 
contraction of inclusive discs is performed by iterative 
procedure in circular arithmetic. 
The proposed interval process may be regarded as a ver- 
sion of  classical resuk introduced by Weierstrass [ 19] 
(see, also, [1], [3], [5], [6], [13], [18]) with error 
bounds; it is proved that these bounds converge cubically 
t O  z e r o .  

The application of the suggested simultaneous method 
for solving an algebraic equation is shown in section 3. 

2. INTERVAL METHOD 

Consider a polynomial of  degree n ~ 3 

n 

PCz) = 1 (z - 

with simple real or complex zeros ~1 ..... ~n" Suppose that 

disjoint discs Z i = {mid(Zi); rad (Zi)) = {zi; ri} with the 

center z i and the radius r i contain the zeros ~i 0=1 ..... n). 

The polynomial P is identical with its Lagrangean inter- 

polation polynomial for the points z 1 ..... z n and ~o, i.e. 

n 
P(z) = E Q(z) 

j= l  Q'(zj)(z-zj) P(zj) +Q(z), 

where 

Q(z) = (Z-Zl)(Z-Z2)...(Z-Zn). 

Suppose that P(zi) =/= 0 for each i = 1 ..... n. For any zero 

~i t i e  {1 ..... n}) of P we have 

n P(zJ) = -1 

j = l  Q" (zj)(~i-zj) 
o r  

n P(zj) 1 P(zi) + E = - I .  

~i-zi'Q'Czi) j=l Q'(zj)(~i-z j) j~i 
With the abbreviation 

= P(zj) P(z]) 

h fl (z.-z.) 
k=l J K 
k4:j 

we obtain 

h i 
~i= zi 0=1 ..... n). (2.1) 

n h. 
1 - E  1 

j= l  j~ i  zj-~i 

Since ~i E Z i (i=l ..... n), on the basis of the inclusion 

monotonocity property from (2.1) it follows 

h i 
~iE z i (i=1 ..... n). (2.2) 

n h i 
1 - E  

j = l  zj-Z i 
j~i  
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Accordingly, ff the interval Z i contains the zero ~i of the 

polynomial P, then the interval (in the form of a disc) 

h i 
z i 

n h i 
1 - Z  

j = l  zf-Z i 
j¢-i 

also contains/;i (i= 1 ..... n). 

Introduce the following notations 

p = ..min (Izl:zE zi-Zj )= rain (Izi-zjl-rj) , 

r - ~  m a x  x<j<~ q' 

H =  max Ihjh 
~ ¢ j ~  

¢/= ~n-1)rH , 
p2 

n h. 
w i=  Z J , 

j = l  zj-z i 
j#=i 

w i=  ~ hi 
j= l  j:/=i zj-zi 

It is known (see, e.g. [2, Ch. 6]) that the disc Zl=(Cl; r l}  

contains the disc Z2= (c2;r 2), denoted by Z 2_  Z1, if 
and only ff 

ICl-C21 ~ r l - r  2. (2.3) 

Discs Z 1 and Z 2 are disjoint (Z 1 N Z 2 = ~) if and only if 

ICl-C2l > r 1 + r 2. (2.4) 

By the properties of complex circular arithmetic we can 
prove the inequality 

lz:z-  < rp2 - rad ( ~ ) .  

Hence, according to (2.37, it follows 

1 C f  1 ] 
Yzi : j -~i ; )  ' 
so that 

n h. f h i (n-1)rH ] Y. ] C ~, ; = {wi;n). (2.5) 
j = l  zj-Z i j = l  zj-z i p2 
j¢i  ¢ i  

Lemma I 

Under the condition 

p > 3(n-1)r, 

the inequality 

H <  ar 

holds, where a = e 1/3 -~ 1.3956. 

(2.67 

(2.7) 

Proof 
The sequence a(k) = (1 + ~ ) k  is bounded and mono- 

tonically increasing so that 
a(k) < lim a(k) = e 1/3 

k-~ q-oo 
for each k E N. According to this, for eachj E (1 ..... n) 
we have the following estimate 

Ib'( C i=1 ~._~. 

<r j  ~ I z ~ - z i l + r i < r ( l + r )  n-1 
i=l  Izj-zil p 

< r [ l +  1 In-1 < el/3 r, 
3(n-1)l 

that is 

H < a r .  [] 

Lemma 2 

If (2.6) holds, then the discs 1-W i (i=1 ..... n) do not 
contain the origin; more precisely, none of these discs 
intersects the disc centered at the origin with radius 

1[ 
e(n) = 1 - ~  1 + 3(n-17 

Proof 
On the basic of the inclusion (2.5) it is sufficient to 
prove that for any iE  (1 ..... n') the disc (1-wi;~/)does 

not intersect the disc (0; e(n)). This requirement is 
equivalent to the inequality 

I1 - wil > r~+e(n). (2.8 7 

Since 

-- 1 -  ~ hi [ > 1 -  ~ Ihi[ > l - ( n - 1 ) H  
• - .  j = l  [zj-zil p ' .-w: j:l z, I 

by virtue of (2.67, we have 

e ( n ) = 1 - l [ 1 +  1 - - ~ ] n < l - ( n - 1 )  r ( l + r ) n  
3 [  3(n-l)] p p 

< 1 - (n-l) Hfp+r) 
p2 

= 1 - (n-1)H _ (n-1)Hr < ii_wil _ ~. 
p p2 

Therefore, the inequality (2.8) is valid. [] 

Remark 1 

It can be shown that the sequence e(n) is bounded and 
monotonically increasing so that for each n I> 3 we 
have 

ell3 
e(3) ~ e(n) < nlim+oo_~ e(n) = 1 - ~ 0.535. 

3 
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Since e(3) -- 0.47 it follows that none of the discs 
1-Wi(i=l ..... n) intersects the disc {0; 0.47}for any n>~ 3. 

Suppose that the disjoint discs Zi(0) = {zi(0); riCO) ), 

which contain the polynomial zeros ~i 0=1 ..... n), are 
found. The relation (2.2) suggests a new interval method 
for the simultaneous £mding of simple polynomial com- 
plex zeros with automatic errorbound. 
Let m=0,1,2 .... be the index of iteration, and let p(m), 
r (m), hj (m), H (m), r/(m), wi(m), wi(m) be notations, 

introduced above, in reference to the m-th iterative step. 
Further, let 

),(m) = r (m) 0 (n) = n+4/3 
p(m)' n- 16/9 " 

Theorem 

E Zi(0) and let the interval sequences (zi(m)) Let 
(i=1 ..... n) be de£med by the formula 

zi(m+l)= zi(m)_ hi(m) - -  ( i = 1  .. . . .  r a m = O , 1 , . . . ) .  
1-wi(m) 

Then, under the condition 

p(0) > 3(n_l)r(0) 

for eachi=l  ..... nandm=0,1  .... we have 

(i) ~i E zi(m); 

(ii) r (m+l) < 7(n-l) r(m)3 
[p(Ol_O(nlr(O)] 2" 

(2.9) 

(2.10) 

Proof 
We shall prove the First assertion by mathematical induc- 

tion. Suppose that ~i E zi(m) for i E {1 ..... n) and 

m=0,1 ..... On the basis of (2.2) andS2.9), it follows 

~i E zi(m)- hi(m) = zi(m+l).  
n h.(m) 

1 .  X 1 
j = l  zj(m)_ zi(m ) j¢i 

Since ~i E Zi(0) , we obtain ~i E zi(m+l) for each 
m=0,1 ..... 
Let us now prove that the interval process (2.9) has the 
convergence order equal to three (the second assertion). 
Using the properties of circular arithmetic and the in- 
clusion (2.5), from (2.9) we obtain 

[ hi(m) I 
ri(m+l) = rad(zi(m+l) ) < tad 

[hi(m) I n (m) 

l 1-wi(m) l 2 - n(m) 2" 

Using (2.7) and (2.10) we £md 

{ l_wi(m) ;¢/(m) } 

H(o) < at(0), 
X(0) < 1 

3(n-1)' 

~(0) <a(n-1) r  (0)2 < a 
p(0)2 9(n-1) 

Taking these limitations, we can write for each i=1 ..... n 

ri(1) < r (1) < - H(0)~I (0) 

1 - (n-llH(0)] 2 77 (0)2 
o(o) j -  

< a2(n-l)r (0)3 

p(0)2 I[1 - a(n_l)X(0)] 2 _ ~/(0)2 t 

< a2(n-1)r (0)3 _ < 7(n-1)r (0)3 

Hence 

r (1) <, 7(n-1)r (0)3 

[ ,(0)- 8 (n)r(O)]'2 

and 

r(1) < 7(n-1) r(0) < r (0) 

[r(°/l 
Starting from (2.10), in the same way as in [9], [10] or 

[17], it can be proved that the discs Z1(1) ..... Zn(1) are 
disjoint and the following inequality 

p(1) > 3(n_1)r(1) 

holds. 
Using the above consideration and mathematical in- 
duction, in a similar way as in [17] it is proved that the 
following relations are valid for each m E N : 

r (m+l) < 7(n-1)r(m)3, (2.11) 
p(m) 2 

p(m+l) > 3(n_l)r(m+l), (2.12) 

p(m) > p(0) _ 0(n)r(0). (2.13) 

By virtue of (2.11) and (2.13) it follows 

r (m+l) < 7(n-1)r (m)3 " 
[p(O) _ 0 (n)r (0)] 2 

proving that the sequence (r (m)) converges to zero at 
least cubically. 
For example, for n > 3 we obtain the following estimate 
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r (m+l) < 7 (n-l)  r!m)3_ 

~o(O) _ 2.4r(0)] ~" 

We proved earlier that (2.10) implies 
p ( m + l ) ~  3(n_l)r(m+l) (m=0,1,...). Therefore, lemma 2 

is applicable for each m=0,1 ..... so that 0 ~ 1 -wi(m). 

Therefore, under the condition (2.10), the interval 
process (2.9) is defined in each iterative step. 
This completes the proof of the theorem. [] 

Remark 2 

From the expression for r (m) it is easy to show that the 
factor tends to (n-1)/(minl}i- ~:1) 2 convergence a s  

• i , j  -J2 
m-->-I -°°. The convergence factor 7(n-1)/p(m) is greater 
because the estimations and inequalities, used to prove 
the theorem, are not strong. Moreover, in practical 
application of  the interval process (2.9), the quotient 

p(0)/r(0) can be much less than 3(n-1) (the condition 
(2.10)). This is verified in many examples. If the poly- 

nomial degree n is higher, the quotient p(0)/r(0) can be 
taken smaller. For example, for n D 5 the condition 
(2.10) can be replaced by the weaker condition 

p(0) ~ 2(n_l)r(0). Finally, note that cubical convergence 
of the interval method 

zi (m+l)  = zi(m)- 1 (2.14) 
P'(zi(m) ) n Z 1 

j = l  zi(m )_ zj(m) P(zi(m)) jq:i 

(i=1 ..... n; re=O,1,...), 

proposed in [7] (see, also [2, Ch. 9], [81, [101, [12, Ch. 
6]), is stated under the initial condition 
p(0) > 6(n_l)r(0). But, in [17] it is proved that the 
method (2.14) converges cubically under the weaker 
assumption p(0) > 2nr(0). 
Note that for the refinement of each disc by (2.14) all 
remaining discs are necessary. But the application of the 
interval method (2.9) enables the refinement of only one 
disc using the approximations of the remaining zeros. 
In order to improve the inclusive discs for k zeros of a 
polynomial ( 1 ~ k < n), Gargantini considered in [7], 
[10] a modification of the method (2.14) with quadratic 
convergence. Starting data were k discs which contain 
these zeros and the circular region not containing the re- 
maining n-k zeros. Now, we shall point out a simplifmd 
version of the method (2.9) with quadratic convergence 
also. 
According to (2.1) it follows that we need not improve 
all approximations of zeros in each iterative step. Let 

Zk+l (0) ..... Zn(0) be the initial approximations which 

are sufficiently close to ~k+l ..... ~n' and let 
Zi(0) = {zi(0); ri(0)} be the initial discs containing 

~i (i=1 ..... k) such that (2.10) holds. Then, we can 
establish the iterative interval process for the simul- 
taneous improvement of k discs : 

ziCm+l)= zi(m)- 

Since 

tad 
j=k+ l  

1- 

hi(m) 

f k hl (m) +~ zj (oh~ (_Oz)i(m) ] 
j ~  zj(m)_zi(m ) j = k + l  

(i=l ..... k; m=O,1,...). (2.15) 

hi(°) ] 
zJ (0) _ zi(m)] = 0 (ri(m)), 

the interval process (2.15) converges quadratically. 
Naturally, if each z.(0) (j=k+l ..... n) is closer to ~- and 

if r l  (0) ..... rk (0) arJe less, then the sequences (ri(~)) 

(i=1 ..... k) will converge faster to zero. 

Remark 3 

For sufficiently small ri(m) from (2.9) we obtain the 

following approximate expression for the center zi(m+l) 

of the interval zi(m+l)" " : 

zi(m+l) = zi(m)- hi(m) (2.16) 
n h. (m) 

I-Z l 
j = l  zj(m) _ zi(m ) 
j~:i 

(i=1 ..... n; m=0,1,...). 

The condition "sufficiently small ri(m)" corresponds to 

the choice of the initial approximations z 1(0) ..... zn(O ) 

such that these approximations are sufficiently close to 
the zeros ~1 ..... ~n" The sequences of interval centers 

(zi(m)), defined by (2.16), converge cubically to 

}i 0=1 ..... n), which is proved in [14] (see, also [15]). 

In this paper the procedure for finding the initial discs 
is not considered. Instead, we shall point at a simple 
procedure for localization of polynomial complex zeros 
which uses the result given by D. Braess and K. P. 
Fladeler [4]. 
Let z I ..... z n be sufficiently good approximations of the 

zeros }1 ..... ~n respectively (For finding these appr oxima- 

tions there are many effective methods). Then, all zeros 
of polynomial P are contained in the union of n discs 

n 
G=;U {z IIz-zjll ~ g}, 

j = l  

where 

n 

R = (=1  lhkl" 

If .re.in ([zi-zjl)> 2R, then all discs are disjoint and each 
l,J 

of them contains only one zero. Namely, in such case 
the condition 42.4) that two discs G i = (zi; K}and 
Gj = {zj; R) (i~j) being separated is satisfied. 
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3. NUMERICAL RESULTS 

In order to test the simukaneous interval method (2.9), 
the program was writen in FORTRAN IV for the Honey- 
well 66 system. Double precision arithmetic (eighteen 
significant digits) was used. At the beginning o f  each 
iterative step the quantities 

hi (m) = P(zi(m) )/Q'(zi(m) ) (i= 1 ..... n) were calculated, 

the real and the imaginary parts being calculated 
separately. Then, these values were used for Finding the 

discs Z l(m) ..... Zn(m). Practically, the initial discs, which 

contain the exact polynomial zeros, were Chosen so that 

the quotient p(0)/r(0) was much less than 3(n-1). Find- 
ing the polynomial zeros with the degree n <~ 12, this 
quotient was less than 4. 

Example 

The polynomial 

P(z) = z 7 + z  5 -  10z 4 - z  3 -  z + 1 0  

was chosen to illustrate the interval method (2.9) 
numerically. The exact zeros of  P are ~1=2, ~2,3=+1, 

~4,5=+i, ~6,7=-1+2L The initial discs, containing these 

zeros, were chosen to be Zi(0) = {zi(0); 0.3~ where 

Zl(0) = 2.2, z2(0) = 1.2+0.1i,  z3(0) = -0.8-0.1i,  

z4(0) = 0.1 + 1.2i, z5(0) = -0.1 - 0.8i, 

z6(0) = -1.1 +2.2i,  z7(0) = -1.1 - 1.8L 

The largest radii o f  discs obtained after the first and the 

second iteration were r (1) ~ 5.03 X 10 -2  and 

r (2) ~ 2.77X 10 -5. For the third iteration we obtained 
the following discs : 

Zl  (3) = {2.000000000000000016 - 1.11 × 10 -17i; 

5.09 × 10 -17} 

Z2(3) = {1.000000000000000053 + 1.29 X 10-17i; 

7.15 X 10 -16} 

Z3(3) = {-1.000000000000000003 - 2.06 X 10-18i; 

3.12 × 10 -17} 

Z4(3) = {3.06 X 10 -18 +0.999999999999999999 i; 

2.12 X 10 -17} 

Z5(3) = (1.63 X 10 -18 - 0.999999999999999_981 i; 

1.09 X 10 -16} 

Z6(3) = {,1.00000000000000000-0 

+2.0000000000000000-0i;  3.61 X 10 -18} 

Z7(3) = {-1.0000000000000000"0-0 

- 2.0000000000000000_0 i; 7.92 X 10-18}. 

The largest radius was r(3) = r2(3) - 7.15 X 10 -16. The 

underlined digit in the above list corresponds to the 
order o f  radius. 
In order to compare, many algebraic equations were 
solved by the interval methods (2.9) and (2.14). These 
examples demonstrate similar behaviour o f  the mention- 

ed methods. The radii o f  inclusive discs, obtained by 
(2.9) and (2.14), have the same order of  degree. Besides, 
we can note that : 
(i) formula (2.14) requires the calculation with n-1 
intervals in each iterative step, while formula (2.9) uses 
only one interval; in such a way it is possible to calculate 
an inclusive disc for arbitrary zero without using the 
remaining discs or the simultaneous inclusion of  k discs 
(1 <~ k ~  n) by (2.15); 
(ii) the interval formula (2.14) requires a lesser number 
of  numerical operations than (2.9). 
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